

## MODELLING NETWORK RESILIENCY

**Preparing for Climate Change** 

Presented by Rhys Wolff & Elli Papaioannou

FC

 $\mathbf{01}$ **Meet Rhys and Elli** 02 A Changing World 03 Long Range Planning and Resiliency **N4** At Risk Areas

05 Quantifying Risk
06 Assessing Network Resiliency
07 Forward

# MEET RHYS & ELLI AT HDR

### THE PRESENTERS

#### Meet Rhys...

- Project Manager and Lead Modeller at HDR with 12 years of experience
- Works on Transportation Master Plans and all sorts of modelling projects





#### Meet Elli...

- Transportation Planner at HDR with 4 years of experience
- Works on MTO's Greater Golden Horseshoe Plan and thinks every day of the grim future

## A BIT ABOUT HDR

- HDR offers Engineering, Architecture, Environmental and Construction Services in Canada, US and worldwide
- 10,000 employees in 225 offices worldwide
- 250 employees in Toronto and Richmond Hill Offices
- Currently working across the GTA with MTO, Metrolinx, Upper and Lower Tier municipalities and transit agencies

#### TRANSPORTATION PLANNING

- Master Planning 
   Functional Planning
- Corridor planning 
   Complete Streets
- Macro-Modelling 
   Micro-Modelling
- Microsimulation 
   Pedestrian Simulation

#### **TRANSIT PLANNING**

- Transit Service Planning Signal Priority
- Operational Reviews Value Analysis
- Higher-order Transit Planning

#### **DECISION ECONOMICS**

- Funding Analysis Risk Management
- Statistics and Data Analytics
- Sustainable Return on Investment

#### FREIGHT RAIL

- Bridge Inspection Rail Modelling
- Cost-Benefit Analysis Facility Design

#### TRANSIT ARCHITECTURE

- Sustainable Design Structural Engineering
- Electrical Engineering Design-Build
- Bus Service and Facility Planning

#### **ROADWAY DESIGN**

- Value Engineering Utilities Civil Engineering
- Construction Administration

#### PUBLIC ENGAGEMENT

• Facilitation • Media Strategy • Branding







# 02 A CHANGING WORLD

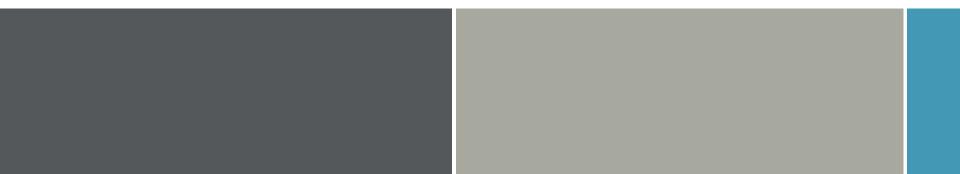
## **CLIMATE CHANGE**

**"Extreme" Weather Events** 

- Increasing frequency of catastrophic weather events
- Rainfalls of 2013 left a GO commuter train submerged in water
- Ice storm of the same year blocked the transit network and left houses without power
- Many other similar events, floods, and extreme heat conditions in Canada and worldwide



## 03 LONG RANGE PLANNING AND RESILIENCY


# WHAT ARE WE DOING IN SOUTHERN ONTARIO?

- Greater Golden Horseshoe (GGH)
  - $_{\circ}~$  Over 31,500  $km^{2}$
  - $_{\circ}~$  Over 9 million people in 2016
  - $_{\circ}$  Over 3 million jobs
  - $_{\circ}$  Projected to grow to over 14 million by 2041
  - $_{\circ}~$  Is the economic engine of Ontario
- Ministry of Transportation of Ontario is developing a long range multimodal transportation plan for the GGH
- The Plan is building infrastructure resiliency in our transportation planning



#### **"STRETCHING" THE FUTURE**

- The GGH Plan looked at 5 distinct stretch futures as part of resiliency planning
- The futures were not ideal conditions but plausible scenarios influenced by the environment, technology, economy and the volatile geopolitical conditions
- Each future had different urban structure, population and employment distribution
- Scenarios were tested using a custom-developed tool to identify important demand connections
- This exercise provided valuable information about which connections are essential or too stressed in a variable future set



#### **USING THE RIGHT TOOLS**

- Different tools can help long range planning
- Travel Demand Forecasting Models are commonly to simulate travel demand conditions
- Provide key forecast metrics such as congestion, delay, trip lengths and mode choices
- Represent typical conditions and assess the ability of the network to meet projected peak-period demand
- GIS applications can help quantify infrastructure that is at risk



### LONG RANGE PLANNING AND RESILIENCY

- The same tools can be used to assess both extreme and recurring events

Identifying at-risk areas



Identifying appropriate scenarios and performance metrics



Running the forecasting model



Evaluating each scenario accordingly

# O4 AT RISK AREAS

### WHY DOES IT MATTER?

- Transportation infrastructure is a valuable capital asset
- Contributes to a productive economy
- The infrastructure and the contribution to productivity are often undermined by inclement weather events
- Changing climate reality contributes to enormous costs for maintaining and rebuilding pieces of the infrastructure



### AT RISK AREAS

#### Ongoing and plannable considerations of known effects and cumulative results of climate change that are being documented and categorized

- Examples include urban heat areas, floodplains, or areas at risk of blowing snow
- Cities, agencies and authorities document such areas and make datasets (in GIS or other format) available openly or upon request

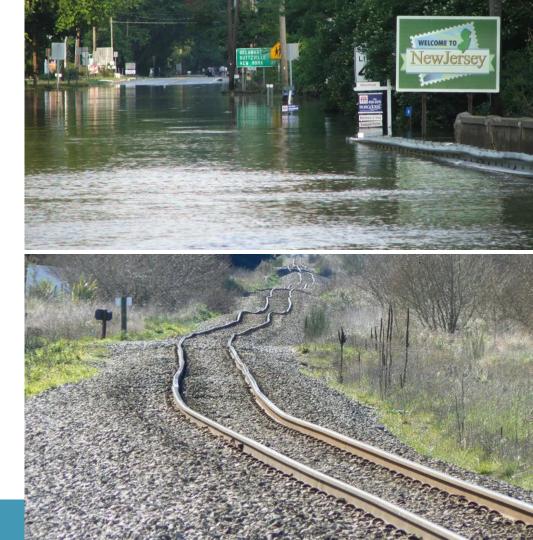
#### - Emergency considerations of

abrupt conditions that need to be examined in order to build a resilient and adaptable network

- Examples include ice storms, floods and infrastructure failure/closure of critical network elements
- Are more difficult to predict
- Require the identification of critical network elements that would be under the highest stress in an emergency situation

#### ONGOING AND PLANNABLE CONSIDERATIONS

#### - Floodplains


 A spatial representation of areas that are in high risk of being flooded if a river/watercourse experiences extreme flows because of heavy rain or snowmelt

#### Extreme Heat

 considerable spatial heterogeneity and there are multiple factors that contribute to heat vulnerability, including the topography, vegetation, and settlement density

#### Other

 Areas susceptible to blowing snow place more stress on infrastructure and pose higher risks to people/goods travelling through them



# HOW TO ACCOUNT FOR ONGOING AND PLANNABLE CONSIDERATIONS

#### - Looking at future infrastructure alternatives

- Alternative transportation infrastructure can be cross-referenced with the location of floodplains and urban heat areas
- Length of each route (route km or route lane km/ rail length or number of tracks) that passes through them
- Road and rail infrastructure can be ranked based on the passenger volumes or value of goods that they carry daily
- Help avoid or view unfavorably infrastructure alternatives that traverse through at risk areas
- Determine project cost estimates

#### - Assessing existing infrastructure

 Areas that are exposed to higher risk should help inform the need for redundant routes in an effort to build a resilient region and.

#### EMERGENCY CONSIDERATIONS

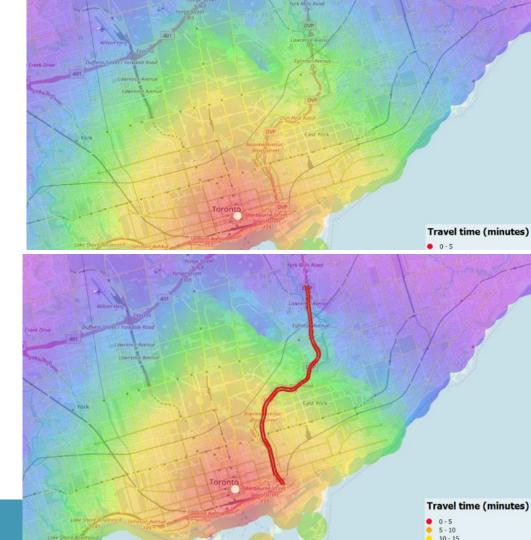
- Focuses on emergency management situations that cannot be planned for
  - Examples include evacuation, failure of critical components of the network, such as freeway interchanges or central train station
- Test and determine the impact to the system
- Identify proposed solutions to alleviate the pressure.



# 05 QUANTIFYING RISKS

#### **QUANTIFYING THE RISK**

| Metric                 | Example                                                                   | Question                                                                |
|------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Evacuation time        | Percentage of residents who are able to exit the region within 45 minutes | How effective is the network at facilitating evacuation (one-way flows) |
| Risk areas             | Km through areas susceptible to blowing snow                              | How susceptible is the network to<br>- extreme weather events?          |
|                        | Km of network in flood-risk areas                                         |                                                                         |
|                        | Km of network through urban heat islands                                  | -                                                                       |
| Infrastructure closure | Station removed: impact on travel times and congestion                    | How does the network respond if                                         |
|                        | levels                                                                    | a key facility is unavailable?                                          |
|                        | Major facility (highway or transit line) removed: impact                  | How does the network respond if                                         |
|                        | on travel times and congestion levels                                     | a key link is unavailable?                                              |


## 06 ASSESSING NETWORK RESILIENCY

### ASSESSING NETWORK RESILIENCY

- Network performance and the need for enhanced capacity is typically based on projections of recurring demand
- Develop alternative scenarios
- Use different ways to identify impact of alternative scenarios
- Hours of delay, % of network that is susceptible to extreme weather events, % of population that can be evacuated within a specific interval


#### EXAMPLE

 Shows the impact of how travel times out of the core will be affected if a key highway is unavailable.



#### EXAMPLE

- Shows the impact of how congestion out of the core will be affected if a key highway is unavailable
- These results provide at a glance comparisons of the impact of closures and the facilities that would be most greatly affected



# O7 FORWARD

## **MOVING FORWARD**

- Realize the impacts and threats of climate change
- Create detailed and consistent mapping
- At risk areas should be made openly available and should be updated frequently
- Resilience-testing should be part of all transportation plans
- Long range planning should examine extreme events beyond the peak
- Critical components of the network should be identified and stress-tested



# Thank you for listening! FR

Rhys Wolff Rhys.Wolff@hdrinc.com Elli Papaioannou Elli.Papaioannou@hdrinc.com

© 2016 HDR, Inc., all rights reserved.